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Abstract
The time evolution of wave packets (WPs) built from the eigenstates of the
Dirac equation for a hydrogenic system is considered. We investigate the
space and spin motion of wave packets which, in the non-relativistic limit, are
stationary states with a probability density distributed almost uniformly along
the classical, elliptical orbit (elliptic WP). We show that the precession of
such a WP, due to relativistic corrections to the energy eigenvalues, is strongly
correlated with the spin motion. We also show that the motion is universal for
all hydrogenic systems with an arbitrary value of the atomic number Z.

PACS numbers: 03.65.P, 03.65, 03.65.S

The detailed study of the time evolution of quantum wave packets (WPs) in simple atomic or
molecular systems has been the object of growing attention for more than ten years [1]. Most
of the previous theoretical studies were done in a non-relativistic framework. In the field of
relativistic quantum mechanics most of the efforts have been focused on the problem of the
interaction between the atoms and a mixture of static fields with, most of the time, intense laser
fields [2–11]. Under these conditions the use of a relativistic theory is fully justified since the
external field is then able to bring considerable energy to the WP. For isolated atoms, however,
the use of relativistic dynamics is more questionable if the WP is followed or observed only for
a short period of time. In [12] relativistic wave packets, corresponding to circular orbits, have
been constructed for hydrogenic atoms with a large Z, and propagated over time according
to the Dirac equation. Particular attention was paid to the spin collapse event, i.e. to the
maximum entanglement, in the course of time, of the spin degree of freedom with the spatial
ones. This phenomenon was first shown to take place for a WP in a harmonic oscillator with
a spin–orbit force [13], where it is periodic. For this reason it has been called the spin–orbit
pendulum. In the Dirac equation with a Coulomb potential, it is produced by the built-in
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Figure 1. Squares of coefficients of the expansion (1) for n = 50, ε = 0.4 (left) and ε =
0.8 (right).

spin–orbit interaction and is not periodic. The timescale where this effect can manifest itself
was discussed in [12], as a function of the charge Z of the atom and the average principal
quantum number n of the WP. This phenomenon is expected to take place on a longer timescale
similar to the other time-dependent quantum effects of spreading and fractional revivals [14].
We intend below to complement this work by studying the possible relativistic precession of
elliptic WPs and by comparing this precession to the spin motion. A preliminary version of
the present work was already presented at the ECAMP VII conference [15].

There are two possible ways to build up a WP ‘on top of a classical elliptic orbit’ in non-
relativistic mechanics. One of them is by kicking a well-designed WP properly, for example
a Gaussian WP, that is then evolved in time by the free Hamiltonian until it spreads above an
average classical ellipse. This method is not very easy to apply and its main inconvenience is to
produce an internal motion within the ellipse that is able to blur the precession. Therefore, we
have preferred a second, much simpler method that consists of using the coherent WPs of [16],
which are stationary states of the non-relativistic Coulomb problem. The space probability
density of these states was indeed shown to be highly concentrated around a classical Bohr–
Sommerfeld ellipse. If these states can be adapted to relativistic dynamics their time evolution
will doubtlessly be due to relativistic effects, i.e. due to the fine structure that will act as a
perturbation. Let us first show how to adapt these states to a relativistic theory. We want
the spatial part of the large components of the new WP to tend (in the non-relativistic limit)
towards the state |nγ 〉 of [16] which is defined as

|nγ 〉 =
∑
l,m

(−1)(l+m)/2 2n−l−1(n − 1)!

[(l − m)/2]![(l + m)/2]!

[
(l + m)!(l − m)!(2l + 1)

(n − l − 1)!(n + l)!

]1/2

×
(

sin
γ

2

)n−m−1 (
cos

γ

2

)n+m−1
|n, l,m〉 =

∑
lm

w
(n)
lm |n, l,m〉. (1)

The probability density 〈nγ |nγ 〉 is fairly localized onto a Bohr orbit with eccentricity
ε = sin γ and the average angular momentum is

lav = (n − 1) cos γ (2)

where n is the principal quantum number of the orbitals |n, l,m〉 which are admixed in (1).
The sum contains n(n + 1)/2 values of m with even l + m. The contribution of states with
m < l decreases very rapidly with m (more than one order of magnitude for each two units of
m as shown in figure 1). The dominant weights are those with m = l and their distribution is
nearly Gaussian. The relative contribution of states with m < l increases, however, for larger
values of the eccentricity parameter ε. The larger admixture of these states causes much faster



Relativistic precession and spin dynamics of an elliptic Rydberg wave packet 7805

t= 0

-4000
-2000

0
2000

4000x
-4000

-2000

0

2000

4000

y

0

4×10
-11

8×10
-11

Figure 2. The initial probability density of the relativistic WP (5) with n = 50, ε = 0.4 and Z = 92
in the plane of the classical orbit. The distance is given in units a0/Z, where a0 ≈ 5.29 × 10−11 m
is the Bohr radius. See further discussion on Z dependence.

dephasing of the WP. Therefore, for illustration of typical precession phenomena we have
chosen the case ε = 0.4.

In order to study the entanglement of the spin degrees of freedom with the orbital ones,
it is natural in a non-relativistic theory to start from a product state of an arbitrary spinor

(
a

b

)
with the state |nγ 〉.

|�nr〉 = |nγ 〉
(

a

b

)
=
∑
lm

w
(n)
lm |n, l,m〉

(
a

b

)
. (3)

It may be expanded in eigenstates of total angular momentum |n, l, j = l + s,mj 〉 with
mj = m + 1/2 or m − 1/2 and s = +1/2 or −1/2

|�nr〉 =
∑
lm

w
(n)
lm

{
a

(√
l + 1 + m

2l + 1
|n, l, j>,m + 1/2〉 −

√
l − m

2l + 1
|n, l, j<,m + 1/2〉

)

+ b

(√
l + 1 − m

2l + 1
|n, l, j>,m − 1/2〉 +

√
l + m

2l + 1
|n, l, j<,m − 1/2〉

)}
. (4)

In a similar way as in [12], for a circular WP, the state (4) is transformed into a four component
relativistic state �r by replacing in (4) the non-relativistic states |n, l, j,mj 〉 by the eigenstates
of the Dirac equation with the same quantum numbers. In this manner the WP gets small
components in the most natural way. The radial parts of the large and of the small components
are taken obviously as different ones. The probability density of the relativistic WP built in
this way is represented in figure 2.

The time evolution of the WP is produced by introducing the phase factors exp
(−iE+

l t
)

and exp
(−iE−

l t
)

as coefficients of states with j = l + 1/2 and j = l − 1/2 with their
corresponding eigenvalues. The four components ci(t) i = 1, . . . , 4 of the WP at time t are
given in appendix A with �r defined as

|�r(t)〉 =




|c1(t)〉
|c2(t)〉
|c3(t)〉
|c4(t)〉


. (5)

It should be stressed that for t = 0 �r is no longer a product state of the form of equation (3)
due to the built-in entanglement contained in the solutions of the Dirac equation. However,
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since the small components of �r are indeed very small, this defect has no important effect on
the magnitude of the initial spin. Since the spin–orbit coupling effect, i.e. spin–orbit pendulum
[13], manifests itself more efficiently if s and l are perpendicular to each other, we choose for
our discussion:

a = b = 1√
2

i.e. 〈sx〉nr = 1

2
. (6)

Precession of quantum elliptical states in the Coulomb field has already been considered
in [17], starting also from the same coherent state as given here. However, the precession was
studied only in non-relativistic quantum dynamics as a perturbation effect and no treatment of
the spin was attempted.

Let us finally discuss the time units relevant to our problem. To the lowest order in terms
of the fine structure constant, the energy of an eigenstate |n, l, j = l + s〉 of the Dirac equation
can be written (in au) for a hydrogenic atom of charge Z as

Enlj = En − 1

2

Z4α2

n3(l + s + 1/2)
(7)

with s = +1/2 or −1/2. The constant energy En produces no effect on WP, since it depends
only on n. Let us define an average time unit Tp (p for precession):

Tp = 2π〈 dEnlj

dl

〉 (8)

= 4πn3

Z4α2

〈(
l + s +

1

2

)2
〉

≈ 4πn3l2
av

Z4α2
(9)

= 2l2
avTK

(Zα)2
. (10)

Brackets 〈〉 in (8) and (9) denote average values, lav is given by (2). For n = 50, ε = 0.4
precession time Tp ranges from 1.96 × 10−11 s for Z = 92 to 1.4 × 10−3 s for Z = 1. TK in
(10) denotes the Kepler period.

It is necessary to compare Tp to the radiative lifetime T rad
n,l of hydrogenic levels. We will

use the estimation of T rad
n,l for a single n, l state given in [18]. In atomic units it is

T rad
n,l = 3

2α3Z4
n3

(
l +

1

2

)2

(11)

which was found to agree within 10% with experimental data. One obtains the universal ratio:

Tp

T rad
n,l

= 8πα

3
≈ 0.061 (12)

which guarantees that the precession of the wave packet takes place long enough before even
a single photon is emitted. The occurrence of α in this ratio is understandable, since Tp is a
classical-like quantity, while T rad

n,l is proportional to h̄, because it can be expressed as the ratio
of a typical energy of the emitted photon to the classical radiation rate corresponding to the
orbital motion.

When t = Tp the linear terms in the expansion of Enlj in the power of l give
a contribution of 2π in the exponential factors, leading to a restoration of the WP.
However, the terms of higher order dephase the various partial waves differently, and this
leads to a spreading of the WP near the initial shape [14] (see the discussion on the
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magnitude of these terms in appendix B). Expression (9) or (10) (with the Kepler period
TK = 2πn3/Z2) is also recognized as the classical precession time in the relativistic Coulomb
problem [19].

We note that dEnlj/dl is also (to the first order) the energy difference between the two
spin–orbit partners. Therefore the precession time can also be interpreted as the recurrence
time of the spin. Hence we should observe a strong correlation between the spatial motion of
the density, the precession, and the spin motion.

We now discuss the dynamics dependence on the atomic number, Z. Formula (9) suggests
that the relativistic effects under consideration in this paper depend crucially on Z. The highest
possible Z is indeed required to lower Tp as much as possible. It is interesting to stress,
nevertheless, that within a very good approximation, a scaling of Z is possible which leads to
the universal behaviour of the wave packet (1).

First of all since E, approximated by equation (7), scales as Z4, i.e. as T −1
p , the variable

Z disappears from Et if we use the reduced time t/Tp. The autocorrelation function (A.20)
which is expressed only in terms of Et is the simplest quantity which has a universal behaviour,
provided the same n and ε are used for all values of Z.

The other quantities, such as the probability density and the spin expectation values,
depend on the radial wavefunctions and radial integrals. In a non-relativistic theory scaling
of the radial wavefunction is elementary, it is obtained by dividing the radial wavefunction by
Z3/2 and multiplying the radial variable by Z. This is an exact property. The ratio of small/large
components of the relativistic solutions scales as

√
(1 − E)/(1 + E), i.e. roughly as Z2 and

the radial wavefunctions also depend on Z in a more complicated manner. Nevertheless, on
the whole, as seen in figure 5 below, the small components contribute a very small part of the
probability density even for Z = 92 (see also figure 1 of [12]). The scaling of the probability
density is therefore entirely governed by the large components, i.e. by the non-relativistic
theory.

In a similar way we have checked that the radial integrals which contribute to the spin
expectation values have the same properties: the integrals G+,G− and G+− are equal to 1,
within less than 10−5 and the other F+, F−, . . . contribute in a very small manner, also of the
order of 10−5.

Therefore, the universal behaviour of the wave packet is justified and except for figure 2
no value of Z is given. For longer times, the energy factors omitted in equation (7) which
involve higher powers of Z, play a role and produce a genuine Z dependence. Those effects
will not be discussed here.

The probability density of the wave packet with n = 50, ε = 0.4 and a = b = 1/
√

2,
with Z = 92, is shown for a set of times up to t = Tp in figures 3 and 4. The part of the
density coming from the small components, shown in figure 5, is also concentrated on top of
an ellipse but its magnitude is a thousand times smaller than the total density. For t < Tp/4
the density precesses as described classically with a small dispersion. However, the spreading
takes place very rapidly for larger t and is quite extended for t = Tp.

The precession of the ellipse, the recurrence and spreading can be seen in a more
condensed manner in the autocorrelation function represented in figure 6 for three different
spin preparations (spin up, spin down and a = b = 1/

√
2). For small t/Tp the WP becomes

almost orthogonal to its initial parent, for t = Tp a recurrence occurs but the overlap is only
0.7. Another peak occurs at t = 2Tp but higher frequencies become important and spread
the recurrence. For t > 3Tp these higher frequencies play a dominant role. An example
of an approximate revival for t = 22.6Tp is displayed in figure 7. Fractional revivals [14]
can also be seen to some extent. Two examples of 1/3 and 1/2 revivals are presented in
figure 8.
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Figure 3. The probability density of the relativistic WP (5) on the plane of the classical orbit,
during the first half of the precession period.

The rough independence of the autocorrelation function from the spin preparation requires
some explanation. We can approximate this function by

〈�r(0)|�r(t)〉 ≈ a2
∑

l

w2
ll exp

(−iE+
l t
)

+ b2
∑

l

w2
ll exp

(−iE−
l t
)

(13)

where we have neglected the terms with very small weights w2
l,m�=l . The contribution of the

two sums above is almost the same because wll has a smooth variation with l on the one
hand, and because of the exact equality E−

l = E+
l−1 on the other hand. Finally, the time

evolution of the spin average is presented in figure 9. This figure exhibits what we can call
the relativistic spin–orbit pendulum. Although the wave packet is not prepared initially in a
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Figure 4. The same as in figure 3, but during later stages of the first period of precession.
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Figure 5. The contribution of the small components to the initial probability density. Note that
the vertical scale is a thousand times smaller than that in the previous figures.

pure state of spin, the impurity is very small (for a = b = 1/
√

2 one has 〈σx〉 ≈ 0.9997). As
time goes on the spin stays very nearly in the Oxy plane and rotates around Oz with period
Tp. Its magnitude slowly decreases, however, and for 5 < t/Tp < 10 the spin is almost
totally entangled with the orbital motion, since the average of its three projections is almost
zero. During a period of time that lasts for about 5Tp the angular momentum of the spin
is transferred to the orbital motion and therefore the mean trajectory is not planar anymore
[13]. Since the orbital angular momentum of 40h̄ is much higher than h̄/2 this geometrical
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Figure 7. Example of the approximate revival of the elliptic wave packet. The value of recurrence
probability is 0.73.

effect can hardly be represented graphically. From t ≈ 15Tp a revival of spin occurs. The
spin rotates and increases its magnitude at the same time. This event stays even longer than
initially. However, the recurrence is only partial.

In conclusion we can say that for not too long time, the precession and spin motion
of the WPs are fairly well described by the following approximation: non-relativistic
wavefunctions of the form (3) and relativistic energy eigenvalues. From this point of view
the full, computationally very demanding, relativistic approach is unnecessary. However, this
conclusion may be formulated not a priori but only a posteriori.

We would like to stress the richness of the dynamics just described. Indeed, in addition to
the relativistic precession of the ellipse we have found its fractional revivals at longer times.
During the evolution the spin of the electron is entangled with its orbital motion to various
degrees. All this agrees completely with previous results [13, 14]. However, it was obtained
here in a full relativistic calculation. Since we have been able to scale the atomic number Z we
have given a universal behaviour to our WP. It is, however, clear that this scaling is destroyed
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in real atoms in a more realistic theory which would take into account quantum defects. Their
inclusion would also distort the dynamics, for example it would change the precession time,
in a way that is out of the reach of our simple theory. As far as purely relativistic effects are
concerned, such as the importance of the small components or the zitterbewegung, we have
found them to be negligible in the Coulomb problem, in contrast to the Dirac oscillator [20]
in which they play a major role.
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Appendix A. Details of the calculations

Replacing a non-relativistic wavefunction in (4) by the eigenstates of the Dirac equation, one
obtains for �r(t)

�r(t) =
∑
lm

w
(n)

lm

{
a

√
l + 1 + m

2l + 1

(
ign′

+
�l,j>,m+1/2

−fn′
+
�l+1,j>,m+1/2

)
exp

(−iE+
l t
)

+ a

√
l − m

2l + 1

(
ign′−�l,j<,m+1/2

−fn′−�l−1,j<,m+1/2

)
exp

(−iE−
l t
)

+ b

√
l + 1 − m

2l + 1

(
ign′

+
�l,j>,m−1/2

−fn′
+
�l+1,j>,m−1/2

)
exp

(−iE+
l t
)

− b

√
l + m

2l + 1

(
ign′−�l,j<,m−1/2

−fn′−�l−1,j<,m−1/2

)
exp

(−iE−
l t
)}

. (A.1)

We have used the notation of [12]: g(r) and f (r) are the radial parts of the large and small
components associated with the quantum numbers n′ = n − (j + 1/2). These functions are
multiplied by the spherical tensors �l,j,mj

which are defined by equations (4a) and (4b) of
[12]. The energy of the spin–orbit partners of a given value of l is denoted by E+

l if j = l +1/2
and E−

l if j = l − 1/2, respectively.
For numerical calculations it is convenient to rewrite components of (A.1) in the following

form:

|c1(t)〉 = i
∑

l

{
gn′

+
exp

(−iE+
l t
)∑

m

w
(n)

lm

(
a

l + 1 + m

2l + 1
|l,m〉

+ b

√
(l + 1 − m)(l + m)

2l + 1
|l,m − 1〉

)

+ gn′− exp
(−iE−

l t
)∑

m

w
(n)
lm

(
a

l − m

2l + 1
|l,m〉

− b

√
(l + 1 − m)(l + m)

2l + 1
|l, m − 1〉

)}
(A.2)

|c2(t)〉 = i
∑

l

{
gn′

+
exp

(−iE+
l t
)∑

m

w
(n)
lm

(
b
l + 1 − m

2l + 1
|l,m〉

+ a

√
(l + 1 + m)(l − m)

2l + 1
|l, m + 1〉

)

+ gn′− exp
(−iE−

l t
)∑

m

w
(n)

lm

(
b

l + m

2l + 1
|l, m〉

− a

√
(l + 1 + m)(l − m)

2l + 1
|l,m + 1〉

)}
(A.3)
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|c3(t)〉 =
∑

l

{
fn′

+
exp

(−iE+
l t
)∑

m

w
(n)
lm

(
a

√
(l + 1 + m)(l + 1 − m)

(2l + 1)(2l + 3)
|l + 1,m〉

+ b

√
(l + 1 − m)(l + 2 − m)

(2l + 1)(2l + 3)
|l + 1,m − 1〉

)

+ fn′− exp
(−iE−

l t
)∑

m

w
(n)

lm

(
a

√
(l + m)(l − m)

(2l + 1)(2l − 1)
|l − 1,m〉

− b

√
(l + m)(l − 1 + m)

(2l + 1)(2l − 1)
|l − 1,m − 1〉

)}
(A.4)

|c4(t)〉 =
∑

l

{
fn′

+
exp

(−iE+
l t
)∑

m

w
(n)

lm

(
−b

√
(l + 1 + m)(l + 1 − m)

(2l + 1)(2l + 3)
|l + 1,m〉

− a

√
(l + 1 + m)(l + 2 + m)

(2l + 1)(2l + 3)
|l + 1,m + 1〉

)

+ fn′− exp
(−iE−

l t
)∑

m

w
(n)
lm

(
−b

√
(l + m)(l − m)

(2l + 1)(2l − 1)
|l − 1,m〉

+ a

√
(l − m)(l − 1 − m)

(2l + 1)(2l − 1)
|l − 1,m + 1〉

)}
. (A.5)

Using the explicit form of the WP, one obtains for the average values of the spin operators

〈σx〉t = 2ab
∑
lm

{
w2

l,m

[
G+

(l + 1)2 − m2

(2l + 1)2
+ G−

l2 − m2

(2l + 1)2
− F+

(l + 1)2 − m2

(2l + 1)(2l + 3)

− F−
l2 − m2

(2l + 1)(2l − 1)
+ 2G+−

l(l + 1) + m2

(2l + 1)2
cos (ωlt)

]
+ wl,mwl−2,m−2

×
[
F−+

√
(l + m)(l − 1 + m)(l − 2 + m)(l − 3 + m)

(2l − 1)2(2l + 1)(2l + 3)
cos (ω′′

l t)

]

+ wl,mwl,m−2

√
(l + m)(l − 1 + m)

(2l + 1)

[√
(l + 1 − m)(l + 2 − m)

(2l + 1)

× [G+ + G− − 2G−+ cos (ωlt)] −
√

(l + 2 − m)(l − 3 − m)

(2l − 1)
F−

−
√

(l + 2 − m)(l + 1 − m)

(2l + 3)
F+

]
− wl,mwl−2,m

×

2F−+

√
(l2 − m2)((l − 1)2 − m2)

(2l − 1)2(2l + 1)(2l − 3)
cos (ω′′

l t)


 + wl,mwl+2,m−2

×
[
F ′

−+

√
(l + 1 − m)(l + 2 − m)(l + 3 − m)(l + 4 − m)

(2l + 1)(2l + 3)2(2l + 5)
cos (ω′

l t)

]}

(A.6)
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〈σy〉t = 2ab
∑
lm

{
w2

l,m

[
2m

2l + 1
G+− sin (ωlt)

]

− wl,mwl−2,m−2

[
F−+

√
(l + m)(l − 1 + m)(l − 2 + m)(l − 3 + m)

(2l − 1)2(2l + 1)(2l + 3)
sin (ω′′

l t)

]

+ wl,mwl−2,m


2F−+

√
(l2 − m2)((l − 1)2 − m2)

(2l − 1)2(2l + 1)(2l − 3)
sin (ω′′

l t)


− wl,mwl+2,m−2

×
[
F ′

−+

√
(l + 1 + m)(l + 2 − m)(l + 3 − m)(l + 4 − m)

(2l − 1)(2l + 3)2(2l + 5)
sin (ω′

l t)

]}
(A.7)

and

〈σz〉t =
∑
lm

{
w2

l,m

[
a2 2m + 1

2l + 1

(
G+

l + 1 + m

2l + 1
− G−

l − m

2l + 1
− F+

l + 1 + m

2l + 3
+ F−

l − m

2l − 1

)

+ b2 2m − 1

2l + 1

(
G+

l + 1 − m

2l + 1
− G−

l + m

2l + 1
− F+

l + 1 − m

2l + 3
+ F−

l + m

2l − 1

)

+ 4G+− cos (ωlt)

(
a2 (l − m)(l + 1 + m)

(2l + 1)2
− b2 (l + m)(l + 1 − m)

(2l + 1)2

)]

+ 4(a2 − b2)wl,mwl+2,mF ′
−+

√
((l + 1)2 − m2)((l + 2)2 − m2)

(2l + 1)(2l + 3)2(2l + 5)
cos (ω′

l t)

}
.

(A.8)

In the above formulae, the following notation has been introduced:

ωl = (
E+

l − E−
l

)
(A.9)

ω′
l = (

E−
l+2 − E+

l

)
(A.10)

ω′′
l = (

E−
l − E+

l−2

)
. (A.11)

Note that ω′
l = ω′′

l+2. Radial integrals are denoted as follows:

G+ =
∫ ∞

0

(
g+

l (r)
)2

r2 dr (A.12)

G− =
∫ ∞

0

(
g−

l (r)
)2

r2 dr (A.13)

F+ =
∫ ∞

0

(
f +

l (r)
)2

r2 dr (A.14)

F− =
∫ ∞

0

(
f −

l (r)
)2

r2 dr (A.15)

G+− =
∫ ∞

0
g+

l (r)g−
l (r)r2 dr (A.16)

F+− =
∫ ∞

0
f +

l+2(r)f
−
l (r)r2 dr (A.17)
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F−+ =
∫ ∞

0
f +

l−2(r)f
−
l (r)r2 dr (A.18)

F ′
−+ =

∫ ∞

0
f +

l (r)f −
l+2(r)r

2 dr. (A.19)

Apart from the case of G+,G−, F+, F− for l = n − 1, which are relatively easily obtained
analytically, all other radial integrals have been calculated numerically (using quadruple
precision).

The autocorrelation function can be calculated from (A.1) in a straightforward way:

〈�r(0)|�r(t)〉 =
∑

l

{
exp

(−iE+
l t
) [∑

m

w2
l,m

(
a2 l + 1 + m

2l + 1
+ b2 l + 1 − m

2l + 1

)]

+ exp
(−iE−

l t
) [∑

m

w2
l,m

(
a2 l − m

2l + 1
+ b2 l + m

2l + 1

)]}
(A.20)

Appendix B

Let us use the following notation:

k = j + 1/2 Ek = Enlj

m0c2
x = (Zα)2. (B.1)

The exact eigenenergies Ek (in units of m0c
2) are given by

Ek =
[

1 +
x2

(n − k +
√

k2 − x2)2

]−1/2

. (B.2)

Expanding this expression in Taylor series with respect to x, one obtains

Ek = 1 − x2

2n2
− x4

4n3

(
2

k
− 3

2n

)
− x6

4n3

(
1

2k3
+

3

2nk2
− 3

n2k
+

5

4n3

)
+ [O(x)]8. (B.3)

In equation (7) only the lowest term depending on k in x4, i.e. δ4Ek = − x4

4n3
2
k
, has been

included. The higher order term δ6Ek contributes very little, because the ratio δ6Ek/δ4Ek =
x2
(

1
k2 + 3

4nk
− 3

2n2 + 5k
8n3

)
reaches the maximum value of about 0.0005 for ε = 0.4 and Z = 92

and stays much smaller for lower Z. Then the time evolution for not too long period is mainly
determined by the lowest order contribution (7).

The precession time is determined by the derivative

∂Ek

∂k

∣∣∣∣
k=lav

= x4

2n3k2

[
1 +

3x2

2

(
1

2k2
+

1

nk
− 1

2n2

)]
. (B.4)

Again in equations (8) and (9) only terms of the order of x4 have been used. The x6-order
term contributes at most about 0.000 22 of the x4-order term for ε = 0.4 and Z = 92.
Therefore, we conclude that the x6-order term can be safely neglected in estimation of the
precession time Tp.
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